Skip to contents


Current information on the number of Medicare beneficiaries with hospital/medical and prescription drug coverage, available for several geographical areas.


The Medicare Monthly Enrollment data provides current monthly information on the number of Medicare beneficiaries with hospital/medical coverage and prescription drug coverage, available for several geographic areas including national, state/territory, and county.

The hospital/medical coverage data can be broken down further by health care delivery (Original Medicare versus Medicare Advantage and Other Health Plans) and the prescription drug coverage data can be examined by those enrolled in stand-alone Prescription Drug Plans and those enrolled in Medicare Advantage Prescription Drug plans.

The dataset includes enrollee counts on a rolling 12 month basis and also provides information on yearly trends.


Search Examples

Set the level argument to “National” and the period argument to “Year” to return year-by-year national data:

beneficiary_enrollment(level = "National", 
                       period = "Year") |> 
  dplyr::select(!c(period:fips))
#> # A tibble: 10 × 20
#>     year bene_total bene_orig bene_ma_oth bene_aged_total bene_aged_esrd
#>    <int>      <int>     <int>       <int>           <int>          <int>
#>  1  2013   52425659  37613096    14812563        43761388         234590
#>  2  2014   54013038  37790373    16222665        45216665         245705
#>  3  2015   55496222  38025274    17470948        46630952         258350
#>  4  2016   56981183  38610384    18370800        48143217         269019
#>  5  2017   58457244  38667830    19789414        49678033         278642
#>  6  2018   59989883  38665082    21324800        51303898         290243
#>  7  2019   61514510  38577012    22937498        52991455         301798
#>  8  2020   62840267  37776345    25063922        54531919         305080
#>  9  2021   63892626  36356380    27536246        55851321         305227
#> 10  2022   65027175  35197077    29830099        57300339         304390
#> # ℹ 14 more variables: bene_aged_no_esrd <int>, bene_dsb_total <int>,
#> #   bene_dsb_esrd <int>, bene_dsb_no_esrd <int>, bene_ab_total <int>,
#> #   bene_ab_orig <int>, bene_ab_ma_oth <int>, bene_rx_total <int>,
#> #   bene_rx_pdp <int>, bene_rx_mapd <int>, bene_rx_elig <int>,
#> #   bene_rx_full <int>, bene_rx_part <int>, bene_rx_none <int>


Or set just the level argument to include month-by-month data as well:

beneficiary_enrollment(level = "National") |> 
  dplyr::select(!c(level:fips)) |> 
  dplyr::filter(period %in% month.name)
#> # A tibble: 121 × 21
#>     year period  bene_total bene_orig bene_ma_oth bene_aged_total bene_aged_esrd
#>    <int> <chr>        <int>     <int>       <int>           <int>          <int>
#>  1  2013 January   51727774  37204960    14522814        43355761         257243
#>  2  2013 Februa…   51810690  37247253    14563437        43388016         252347
#>  3  2013 March     51946603  37336191    14610412        43467837         248322
#>  4  2013 April     52052091  37436020    14616071        43523878         244081
#>  5  2013 May       52166970  37475723    14691247        43592624         240089
#>  6  2013 June      52301688  37547041    14754647        43662467         236203
#>  7  2013 July      52466118  37618358    14847760        43772726         232469
#>  8  2013 August    52626340  37713161    14913179        43882570         228612
#>  9  2013 Septem…   52782073  37803887    14978186        43982185         224793
#> 10  2013 October   52940709  37908729    15031980        44091229         220966
#> # ℹ 111 more rows
#> # ℹ 14 more variables: bene_aged_no_esrd <int>, bene_dsb_total <int>,
#> #   bene_dsb_esrd <int>, bene_dsb_no_esrd <int>, bene_ab_total <int>,
#> #   bene_ab_orig <int>, bene_ab_ma_oth <int>, bene_rx_total <int>,
#> #   bene_rx_pdp <int>, bene_rx_mapd <int>, bene_rx_elig <int>,
#> #   bene_rx_full <int>, bene_rx_part <int>, bene_rx_none <int>


Setting the level to “State” will return data for each state:

beneficiary_enrollment(period = "Year", 
                       level = "State") |> 
  dplyr::select(!c(period:state, county:fips))
#> # A tibble: 570 × 21
#>     year state_name           bene_total bene_orig bene_ma_oth bene_aged_total
#>    <int> <chr>                     <int>     <int>       <int>           <int>
#>  1  2013 Alabama                  921477    711448      210029          698720
#>  2  2013 Alaska                    76224     75676         549           63712
#>  3  2013 Arizona                 1050128    658948      391180          898705
#>  4  2013 Arkansas                 572713    467399      105315          438855
#>  5  2013 California              5300177   3318396     1981781         4582391
#>  6  2013 Colorado                 721035    468492      252542          620821
#>  7  2013 Connecticut              608512    467291      141221          526964
#>  8  2013 Delaware                 167686    155803       11883          141355
#>  9  2013 District of Columbia      83964     74946        9018           69193
#> 10  2013 Florida                 3753454   2402926     1350528         3239566
#> # ℹ 560 more rows
#> # ℹ 15 more variables: bene_aged_esrd <int>, bene_aged_no_esrd <int>,
#> #   bene_dsb_total <int>, bene_dsb_esrd <int>, bene_dsb_no_esrd <int>,
#> #   bene_ab_total <int>, bene_ab_orig <int>, bene_ab_ma_oth <int>,
#> #   bene_rx_total <int>, bene_rx_pdp <int>, bene_rx_mapd <int>,
#> #   bene_rx_elig <int>, bene_rx_full <int>, bene_rx_part <int>,
#> #   bene_rx_none <int>


Select a particular state:

beneficiary_enrollment(period = "Year", 
                       level = "State",
                       state = "GA")
#> # A tibble: 10 × 26
#>     year period level state state_name county fips  bene_total bene_orig
#>    <int> <chr>  <chr> <chr> <chr>      <chr>  <chr>      <int>     <int>
#>  1  2013 Year   State GA    Georgia    Total  13       1412936   1039767
#>  2  2014 Year   State GA    Georgia    Total  13       1470380   1046071
#>  3  2015 Year   State GA    Georgia    Total  13       1523200   1044530
#>  4  2016 Year   State GA    Georgia    Total  13       1573277   1049087
#>  5  2017 Year   State GA    Georgia    Total  13       1624056   1051459
#>  6  2018 Year   State GA    Georgia    Total  13       1676019   1046723
#>  7  2019 Year   State GA    Georgia    Total  13       1727412   1040090
#>  8  2020 Year   State GA    Georgia    Total  13       1773148   1012084
#>  9  2021 Year   State GA    Georgia    Total  13       1808944    953980
#> 10  2022 Year   State GA    Georgia    Total  13       1848723    916979
#> # ℹ 17 more variables: bene_ma_oth <int>, bene_aged_total <int>,
#> #   bene_aged_esrd <int>, bene_aged_no_esrd <int>, bene_dsb_total <int>,
#> #   bene_dsb_esrd <int>, bene_dsb_no_esrd <int>, bene_ab_total <int>,
#> #   bene_ab_orig <int>, bene_ab_ma_oth <int>, bene_rx_total <int>,
#> #   bene_rx_pdp <int>, bene_rx_mapd <int>, bene_rx_elig <int>,
#> #   bene_rx_full <int>, bene_rx_part <int>, bene_rx_none <int>


Each county in that state:

beneficiary_enrollment(period = "Year", 
                       level = "County",
                       state = "GA")
#> # A tibble: 1,590 × 26
#>     year period level  state state_name county   fips  bene_total bene_orig
#>    <int> <chr>  <chr>  <chr> <chr>      <chr>    <chr>      <int>     <int>
#>  1  2013 Year   County GA    Georgia    Appling  13001       3389      2686
#>  2  2013 Year   County GA    Georgia    Atkinson 13003       1248       991
#>  3  2013 Year   County GA    Georgia    Bacon    13005       1977      1552
#>  4  2013 Year   County GA    Georgia    Baker    13007        608       478
#>  5  2013 Year   County GA    Georgia    Baldwin  13009       7722      4660
#>  6  2013 Year   County GA    Georgia    Banks    13011       3239      2504
#>  7  2013 Year   County GA    Georgia    Barrow   13013       9738      7093
#>  8  2013 Year   County GA    Georgia    Bartow   13015      15446     11826
#>  9  2013 Year   County GA    Georgia    Ben Hill 13017       3463      2628
#> 10  2013 Year   County GA    Georgia    Berrien  13019       3442      2616
#> # ℹ 1,580 more rows
#> # ℹ 17 more variables: bene_ma_oth <int>, bene_aged_total <int>,
#> #   bene_aged_esrd <int>, bene_aged_no_esrd <int>, bene_dsb_total <int>,
#> #   bene_dsb_esrd <int>, bene_dsb_no_esrd <int>, bene_ab_total <int>,
#> #   bene_ab_orig <int>, bene_ab_ma_oth <int>, bene_rx_total <int>,
#> #   bene_rx_pdp <int>, bene_rx_mapd <int>, bene_rx_elig <int>,
#> #   bene_rx_full <int>, bene_rx_part <int>, bene_rx_none <int>


Or a particular county:

beneficiary_enrollment(period = "Year", 
                       level = "County",
                       state = "GA",
                       county = "Lowndes")
#> # A tibble: 10 × 26
#>     year period level  state state_name county  fips  bene_total bene_orig
#>    <int> <chr>  <chr>  <chr> <chr>      <chr>   <chr>      <int>     <int>
#>  1  2013 Year   County GA    Georgia    Lowndes 13185      14991     12192
#>  2  2014 Year   County GA    Georgia    Lowndes 13185      15604     12343
#>  3  2015 Year   County GA    Georgia    Lowndes 13185      16137     12549
#>  4  2016 Year   County GA    Georgia    Lowndes 13185      16644     12879
#>  5  2017 Year   County GA    Georgia    Lowndes 13185      17172     13007
#>  6  2018 Year   County GA    Georgia    Lowndes 13185      17806     13137
#>  7  2019 Year   County GA    Georgia    Lowndes 13185      18173     12964
#>  8  2020 Year   County GA    Georgia    Lowndes 13185      18736     12660
#>  9  2021 Year   County GA    Georgia    Lowndes 13185      19135     12134
#> 10  2022 Year   County GA    Georgia    Lowndes 13185      19770     11714
#> # ℹ 17 more variables: bene_ma_oth <int>, bene_aged_total <int>,
#> #   bene_aged_esrd <int>, bene_aged_no_esrd <int>, bene_dsb_total <int>,
#> #   bene_dsb_esrd <int>, bene_dsb_no_esrd <int>, bene_ab_total <int>,
#> #   bene_ab_orig <int>, bene_ab_ma_oth <int>, bene_rx_total <int>,
#> #   bene_rx_pdp <int>, bene_rx_mapd <int>, bene_rx_elig <int>,
#> #   bene_rx_full <int>, bene_rx_part <int>, bene_rx_none <int>



Visualizations

Code for table
# National by Year
tot_nation <- beneficiary_enrollment(level = "National", 
                                     period = "Year") |>
  dplyr::select(year, 
                level, 
                total = bene_total,
                orig = bene_orig,
                ma = bene_ma_oth,
                aged = bene_aged_total, 
                disabled = bene_dsb_total, 
                partsAB = bene_ab_total, 
                partD = bene_rx_total)
# State by Year
tot_state <- beneficiary_enrollment(level = "State", 
                                    period = "Year", 
                                    state = "GA") |> 
  dplyr::select(year, 
                state_name, 
                total = bene_total, 
                orig = bene_orig,
                ma = bene_ma_oth,
                aged = bene_aged_total, 
                disabled = bene_dsb_total, 
                partsAB = bene_ab_total, 
                partD = bene_rx_total) |> 
  dplyr::rename(level = state_name)
# County by Year
tot_county <- beneficiary_enrollment(level = "County", 
                                     period = "Year", 
                                     state = "GA", 
                                     county = "Lowndes") |> 
  dplyr::select(year, 
                county, 
                total = bene_total,
                orig = bene_orig,
                ma = bene_ma_oth,
                aged = bene_aged_total, 
                disabled = bene_dsb_total, 
                partsAB = bene_ab_total, 
                partD = bene_rx_total) |> 
  dplyr::rename(level = county)
# Bind together, calculate stats
final <- dplyr::bind_rows(
  tot_nation, 
  tot_state, 
  tot_county) |> 
  dplyr::group_by(level) |> 
  provider:::change_abs(total, year) |> 
  provider:::change_pct(total, total_chg, year) |> 
  dplyr::ungroup() |> 
  dplyr::mutate(orig_pct = orig / total,
                ma_pct = ma / total,
                aged_pct = aged / total,
                disabled_pct = disabled / total,
                ab_pct = partsAB / total,
                d_pct = partD / total) |> 
  dplyr::select(year, 
                level, 
                total_pct_chg = total_pct, 
                orig_pct,
                ma_pct,
                aged_pct, 
                disabled_pct, 
                ab_pct, 
                d_pct)
## gt Table
gt_pct <- final |>   
  gt::gt() |> 
  gt::tab_style(style = gt::cell_text(
    font = c(gt::google_font(name = "Fira Code"), gt::default_fonts())),
    locations = gt::cells_body(columns = dplyr::contains("pct"))) |> 
  gtExtras::gt_theme_538() |> 
  gt::fmt_percent(columns = dplyr::contains("pct"), decimals = 1) |> 
  gt::fmt_percent(columns = c(total_pct_chg), decimals = 1, force_sign = TRUE) |> 
  gt::sub_missing(columns = dplyr::everything(), missing_text = "--") |> 
  gt::cols_label(total_pct_chg = "% Change",
                 orig_pct = "Original",
                 ma_pct = "MA",
                 aged_pct = "Aged",
                 disabled_pct = "Disabled", 
                 ab_pct = "Pts A & B",
                 d_pct = "Part D") |> 
  gtExtras::gt_add_divider(
    columns = c("level", 
                "total_pct_chg", 
                "ma_pct", 
                "disabled_pct"), 
    style = "solid",
    color = "black",
    weight = gt::px(3),
    include_labels = FALSE) |>
  gt::tab_header(
    title = gt::md("Medicare Beneficiaries: **2013 - 2022**"),
    subtitle = gt::md("National, State, & County Percentage Comparisons for **Valdosta, Georgia**")) |> 
  gt::tab_source_note(source_note = "Source: data.cms.gov")
#|> gt::opt_table_font(font = gt::google_font(name = "Karla"))
Medicare Beneficiaries: 2013 - 2022
National, State, & County Percentage Comparisons for Valdosta, Georgia
year level % Change Original MA Aged Disabled Pts A & B Part D
2013 National 71.7% 28.3% 83.5% 16.5% 90.8% 68.1%
2014 National +3.0% 70.0% 30.0% 83.7% 16.3% 90.9% 69.8%
2015 National +2.7% 68.5% 31.5% 84.0% 16.0% 90.8% 71.2%
2016 National +2.7% 67.8% 32.2% 84.5% 15.5% 90.8% 72.3%
2017 National +2.6% 66.1% 33.9% 85.0% 15.0% 90.7% 73.1%
2018 National +2.6% 64.5% 35.5% 85.5% 14.5% 90.6% 73.8%
2019 National +2.5% 62.7% 37.3% 86.1% 13.9% 90.5% 74.5%
2020 National +2.2% 60.1% 39.9% 86.8% 13.2% 90.7% 75.5%
2021 National +1.7% 56.9% 43.1% 87.4% 12.6% 90.8% 76.4%
2022 National +1.8% 54.1% 45.9% 88.1% 11.9% 90.9% 77.4%
2013 Georgia 73.6% 26.4% 80.7% 19.3% 91.9% 67.7%
2014 Georgia +4.1% 71.1% 28.9% 81.0% 19.0% 92.0% 69.3%
2015 Georgia +3.6% 68.6% 31.4% 81.4% 18.6% 92.0% 70.8%
2016 Georgia +3.3% 66.7% 33.3% 82.0% 18.0% 92.0% 71.8%
2017 Georgia +3.2% 64.7% 35.3% 82.5% 17.5% 91.8% 72.4%
2018 Georgia +3.2% 62.5% 37.5% 83.1% 16.9% 91.7% 73.0%
2019 Georgia +3.1% 60.2% 39.8% 83.9% 16.1% 91.6% 73.7%
2020 Georgia +2.6% 57.1% 42.9% 84.6% 15.4% 91.6% 74.6%
2021 Georgia +2.0% 52.7% 47.3% 85.3% 14.7% 91.8% 76.1%
2022 Georgia +2.2% 49.6% 50.4% 86.1% 13.9% 91.8% 77.0%
2013 Lowndes 81.3% 18.7% 78.9% 21.1% 93.8% 64.9%
2014 Lowndes +4.1% 79.1% 20.9% 79.1% 20.9% 94.1% 66.0%
2015 Lowndes +3.4% 77.8% 22.2% 79.2% 20.8% 94.1% 66.8%
2016 Lowndes +3.1% 77.4% 22.6% 79.5% 20.5% 93.9% 67.0%
2017 Lowndes +3.2% 75.7% 24.3% 79.8% 20.2% 93.7% 67.6%
2018 Lowndes +3.7% 73.8% 26.2% 79.9% 20.1% 93.4% 67.8%
2019 Lowndes +2.1% 71.3% 28.7% 80.7% 19.3% 93.1% 68.3%
2020 Lowndes +3.1% 67.6% 32.4% 81.2% 18.8% 93.0% 69.0%
2021 Lowndes +2.1% 63.4% 36.6% 81.7% 18.3% 93.0% 69.8%
2022 Lowndes +3.3% 59.3% 40.7% 82.4% 17.6% 92.7% 71.0%
Source: data.cms.gov


Code for table
national <- beneficiary_enrollment(level = "National")

yr_nat_list <- national |> 
  dplyr::filter(period == "Year") |> 
  dplyr::select(year, bene_orig, bene_ma_oth) |> 
  dplyr::mutate(pct_orig = bene_orig / (bene_orig + bene_ma_oth),
                pct_ma = bene_ma_oth / (bene_orig + bene_ma_oth)) |> 
  tidyr::pivot_longer(cols = c(pct_orig, pct_ma), 
                      names_to = "measure", 
                      values_to = "pct") |> 
  dplyr::group_by(year) |> 
  dplyr::summarise(list_data = list(pct), .groups = "drop")

yr_nat_base <- national |> 
  dplyr::filter(period == "Year") |> 
  dplyr::select(year, bene_total) |> 
  provider:::change_abs(bene_total, year) |> 
  provider:::change_pct(bene_total, bene_total_chg, year)

nat <- dplyr::left_join(yr_nat_base, yr_nat_list, by = dplyr::join_by(year))

gt_nat <- nat |>   
  gt::gt() |> 
  gt::tab_style(
    style = gt::cell_text(font = c(gt::google_font(name = "Fira Code"), 
                                   gt::default_fonts())),
    locations = gt::cells_body(columns = c(bene_total, 
                                           bene_total_chg))) |> 
  gtExtras::gt_theme_538() |> 
  gt::fmt_number(bene_total, 
                 suffixing = TRUE, 
                 decimals = 2) |> 
  gt::fmt_number(bene_total_chg, 
                 suffixing = TRUE, 
                 force_sign = TRUE, 
                 decimals = 1) |> 
  gt::fmt_percent(columns = bene_total_pct, 
                  decimals = 1, 
                  force_sign = TRUE) |> 
  gt::sub_missing(columns = dplyr::everything(), 
                  missing_text = "--") |> 
  gt::cols_merge_n_pct(col_n = bene_total_chg,
                       col_pct = bene_total_pct) |>
  gt::cols_label(bene_total = "Total",
                 bene_total_chg = gt::md("Change (%)")) |> 
  gtExtras::gt_add_divider(columns = c("year", 
                                       "bene_total_chg"), 
                           style = "solid",
                           color = "black",
                           weight = gt::px(2),
                           include_labels = FALSE) |> 
  gtExtras::gt_plt_bar_stack(column = list_data, 
                             width = 80,
                             labels = c("Original  ", 
                                        " Advantage"),
                             palette = c("#ff4343", "black"),
                             fmt_fn = scales::label_percent(accuracy = 0.1, 
                                                            suffix = " %")) |> 
  gt::tab_header(title = gt::md("Medicare Beneficiary Enrollment: **2013 - 2022**"),
    subtitle = gt::md("National Totals, Year-Over-Year")) |> 
  gt::tab_source_note(source_note = "Source: data.cms.gov")

#|> gt::opt_table_font(font = gt::google_font(name = "Karla"))
Medicare Beneficiary Enrollment: 2013 - 2022
National Totals, Year-Over-Year
year Total Change (%) Original || Advantage
2013 52.43M 71.7 %28.3 %
2014 54.01M +1.6M (+3.0%) 70.0 %30.0 %
2015 55.50M +1.5M (+2.7%) 68.5 %31.5 %
2016 56.98M +1.5M (+2.7%) 67.8 %32.2 %
2017 58.46M +1.5M (+2.6%) 66.1 %33.9 %
2018 59.99M +1.5M (+2.6%) 64.5 %35.5 %
2019 61.51M +1.5M (+2.5%) 62.7 %37.3 %
2020 62.84M +1.3M (+2.2%) 60.1 %39.9 %
2021 63.89M +1.1M (+1.7%) 56.9 %43.1 %
2022 65.03M +1.1M (+1.8%) 54.1 %45.9 %
Source: data.cms.gov


Code for table
gt_comp <- beneficiary_enrollment(level = "National", 
                                  period = "Year") |> 
  dplyr::select(!c(period:fips)) |> 
  tidyr::pivot_longer(cols = dplyr::starts_with("bene_"), 
                      names_to = "stat", 
                      values_to = "value") |> 
  tidyr::pivot_wider(names_from = year, 
                     values_from = value) |> 
  gt::gt(rowname_col = "stat") |> 
  gt::tab_style(
    style = gt::cell_text(font = c(gt::google_font(name = "Fira Code"), 
                                   gt::default_fonts())),
    locations = gt::cells_body(columns = c(2:11))) |> 
  gtExtras::gt_theme_538() |> 
  gt::fmt_number(columns = c(2:11), suffixing = TRUE, decimals = 1) |> 
  gt::tab_row_group(label = gt::md("**Disabled Beneficiaries**"), 
                    rows = c("bene_dsb_total", 
                             "bene_dsb_no_esrd", 
                             "bene_dsb_esrd")) |> 
  gt::tab_row_group(label = gt::md("**Aged Beneficiaries**"), 
                    rows = c("bene_aged_total", 
                             "bene_aged_no_esrd", 
                             "bene_aged_esrd")) |> 
  gt::tab_row_group(label = gt::md("**Medicare Part D**"), 
                    rows = c("bene_rx_total", 
                             "bene_rx_pdp", 
                             "bene_rx_mapd", 
                             "bene_rx_elig", 
                             "bene_rx_full", 
                             "bene_rx_part", 
                             "bene_rx_none")) |> 
  gt::tab_row_group(label = gt::md("**Medicare Parts A & B**"), 
                    rows = c("bene_ab_total", 
                             "bene_ab_orig", 
                             "bene_ab_ma_oth")) |> 
  gt::tab_row_group(label = gt::md("**Original Medicare** / **Medicare Advantage**"), 
                    rows = c("bene_orig", 
                             "bene_ma_oth")) |> 
  gt::tab_row_group(label = gt::md("**Total Beneficiaries**"), 
                    rows = c("bene_total")) |> 
  gt::tab_header(title = gt::md(
    "Medicare Beneficiary Enrollment: **2013 - 2022**"),
    subtitle = gt::md("National Totals, Month-Over-Month")) |> 
  gt::tab_source_note(source_note = "Source: data.cms.gov")
Medicare Beneficiary Enrollment: 2013 - 2022
National Totals, Month-Over-Month
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Total Beneficiaries
bene_total 52.4M 54.0M 55.5M 57.0M 58.5M 60.0M 61.5M 62.8M 63.9M 65.0M
Original Medicare / Medicare Advantage
bene_orig 37.6M 37.8M 38.0M 38.6M 38.7M 38.7M 38.6M 37.8M 36.4M 35.2M
bene_ma_oth 14.8M 16.2M 17.5M 18.4M 19.8M 21.3M 22.9M 25.1M 27.5M 29.8M
Medicare Parts A & B
bene_ab_total 47.6M 49.1M 50.4M 51.7M 53.0M 54.3M 55.7M 57.0M 58.0M 59.1M
bene_ab_orig 32.8M 32.9M 33.0M 33.4M 33.2M 33.1M 32.8M 31.9M 30.5M 29.3M
bene_ab_ma_oth 14.8M 16.2M 17.4M 18.4M 19.8M 21.3M 22.9M 25.0M 27.5M 29.8M
Medicare Part D
bene_rx_total 35.7M 37.7M 39.5M 41.2M 42.7M 44.2M 45.8M 47.4M 48.8M 50.3M
bene_rx_pdp 22.7M 23.4M 24.1M 24.8M 25.2M 25.6M 25.6M 25.2M 24.2M 23.4M
bene_rx_mapd 13.0M 14.3M 15.4M 16.4M 17.5M 18.7M 20.2M 22.2M 24.7M 26.9M
bene_rx_elig 10.0M 10.3M 10.6M 10.9M 10.9M 11.4M 11.6M 11.7M 11.7M 12.2M
bene_rx_full 1.0M 1.1M 1.1M 1.1M 1.0M 1.1M 1.1M 1.1M 1.1M 1.1M
bene_rx_part 409.2K 401.5K 406.3K 414.0K 383.8K 406.4K 410.2K 371.2K 323.2K 285.2K
bene_rx_none 24.2M 26.0M 27.4M 28.8M 30.5M 31.4M 32.8M 34.3M 35.7M 36.7M
Aged Beneficiaries
bene_aged_total 43.8M 45.2M 46.6M 48.1M 49.7M 51.3M 53.0M 54.5M 55.9M 57.3M
bene_aged_esrd 234.6K 245.7K 258.4K 269.0K 278.6K 290.2K 301.8K 305.1K 305.2K 304.4K
bene_aged_no_esrd 43.5M 45.0M 46.4M 47.9M 49.4M 51.0M 52.7M 54.2M 55.5M 57.0M
Disabled Beneficiaries
bene_dsb_total 8.7M 8.8M 8.9M 8.8M 8.8M 8.7M 8.5M 8.3M 8.0M 7.7M
bene_dsb_esrd 243.2K 249.1K 254.5K 256.3K 258.4K 261.2K 262.2K 255.9K 248.9K 238.8K
bene_dsb_no_esrd 8.4M 8.5M 8.6M 8.6M 8.5M 8.4M 8.3M 8.1M 7.8M 7.5M
Source: data.cms.gov

Data Dictionary

Variable Description

Year

Year
Indicates the calendar year of Medicare enrollment

Month

Month
Indicates the month of Medicare enrollment

Bene_State

Beneficiary State
Area of beneficiary residence

Bene_County

Beneficiary County
County of beneficiary residence

Tot_Benes

Total Beneficiaries
Count of all Medicare beneficiaries

Orgnl_Mdcr_Benes

Original Medicare Beneficiaries
Count of all Original Medicare beneficiaries

MA_and_Oth_Benes

Medicare Advantage and Other Health Plan Beneficiaries
Count of all Medicare Advantage and Other Health Plan beneficiaries

Aged_Tot_Benes

Total Aged Beneficiaries
Count of Medicare aged beneficiaries

Aged_ESRD_Benes

Aged ESRD Beneficiaries
Count of Medicare aged beneficiaries with End Stage Renal Disease

Aged_No_ESRD_Benes

Aged Beneficiaries Without ESRD
Count of Medicare aged beneficiaries without End Stage Renal Disease

Dsbld_Tot_Benes

Total Disabled Beneficiaries
Count of Medicare disabled beneficiaries

Dsbld_ESRD_and_ESRD_Only_Benes

Disabled Beneficiaries with ESRD and ESRD Only Beneficiaries
Count of Medicare disabled beneficiaries with End Stage Renal Disease and beneficiaries with End Stage Renal Disease only

Dsbld_No_ESRD_Benes

Disabled Beneficiaries Without ESRD
Count of Medicare disabled beneficiaries without End Stage Renal Disease

A_B_Tot_Benes

Total Medicare Part A and Part B Beneficiaries
Count of Medicare beneficiaries enrolled in Hospital Insurance (or Part A) and Supplementary Medical Insurance (or Part B)

A_B_Orgnl_Mdcr_Benes

Original Medicare Part A and Part B Beneficiaries
Count of Original Medicare beneficiaries enrolled in Hospital Insurance (or Part A) and Supplementary Medical Insurance (or Part B)

A_B_MA_and_Oth_Benes

Medicare Advantage and Other Health Plan Part A and Part B Beneficiaries
Count of Medicare Advantage and Other Health Plan beneficiaries enrolled in Hospital Insurance (or Part A) and Supplementary Medical Insurance (or Part B)

Prscrptn_Drug_Tot_Benes

Total Medicare Part D beneficiaries
Count of all Medicare Prescription Drug (or Part D) beneficiaries

Prscrptn_Drug_PDP_Benes

Total Medicare Prescription Drug Plan beneficiaries
Count of Medicare Prescription Drug (or Part D) beneficiaries enrolled in a Prescription Drug Plan

Prscrptn_Drug_MAPD_Benes

Total Medicare Advantage Prescription Drug Plan beneficiaries
Count of Medicare Prescription Drug (or Part D) beneficiaries enrolled in a Medicare Advantage Prescription Drug plan