Skip to contents

Quality Payment Program

Usage

quality_metrics(year)

quality_eligibility(year, npi)

Arguments

year

A vector of years from 2018 to 2025

npi

A vector of NPIs

Examples

qpp_metrics <- quality_metrics(year = 2018:2025)

qpp_eligible <- quality_eligibility(
  year = 2018:2024,
  npi = c(1144544834, 1043477615, 1932365699, 1225701881))

qpp_experience <- build(
  endpoint("qppe"),
  query(npi = any_of(1144544834, 1043477615, 1932365699, 1225701881)))
#> Found 22  Total 5.7 M  Pages 7


qpp_exp <- qpp_experience@string |>
  providertwo:::gremove("/stats") |>
  providertwo:::greplace("size=1", "size=5000") |>
  providertwo:::map_perform_parallel() |>
  providertwo:::set_clean(qpp_experience@year) |>
  purrr::list_rbind(names_to = "prog_year") |>
  providertwo:::map_na_if() |>
  fastplyr::as_tbl()

list(
  experience  = providertwo:::set_clean(qpp_exp, names(qpp_exp)),
  eligibility = qpp_eligible,
  metrics     = qpp_metrics)
#> $experience
#> # A tibble: 22 × 230
#>    prog_year provider_key practice_state_or_us_te…¹ practice_size clinician_type
#>    <chr>     <chr>        <chr>                     <chr>         <chr>         
#>  1 2023      000131692    MD                        1572          Doctor of Med…
#>  2 2023      000475122    GA                        14            Physician Ass…
#>  3 2022      000021992    PA                        1518          Doctor of Med…
#>  4 2022      000212248    GA                        11            Physician Ass…
#>  5 2021      000066744    PA                        1940          NA            
#>  6 2021      000183263    GA                        11            NA            
#>  7 2021      000493218    CO                        3             NA            
#>  8 2020      000402699    PA                        1440          NA            
#>  9 2020      000000310    GA                        13            NA            
#> 10 2020      000434064    CO                        2             NA            
#> # ℹ 12 more rows
#> # ℹ abbreviated name: ¹​practice_state_or_us_territory
#> # ℹ 225 more variables: clinician_specialty <chr>, years_in_medicare <chr>,
#> #   npi <chr>, non_reporting <chr>, reporting_option <chr>,
#> #   participation_option <chr>, mips_value_pathway_id <chr>,
#> #   mips_value_pathway_title <chr>, medicare_patients <chr>,
#> #   allowed_charges <chr>, services <chr>, opted_into_mips <chr>, …
#> 
#> $eligibility
#> # A tibble: 28 × 16
#>    prog_year npi        entity last_name first_name middle_name specialty       
#>        <int> <chr>       <int> <chr>     <chr>      <chr>       <chr>           
#>  1      2024 1043477615      1 HUSSAIN   SARAH      K           Clinical/Cardia…
#>  2      2023 1043477615      1 HUSSAIN   SARAH      K           Clinical/Cardia…
#>  3      2022 1043477615      1 HUSSAIN   SARAH      K           Clinical/Cardia…
#>  4      2021 1043477615      1 HUSSAIN   SARAH      K           Clinical/Cardia…
#>  5      2020 1043477615      1 HUSSAIN   SARAH      K           Clinical/Cardia…
#>  6      2019 1043477615      1 HUSSAIN   SARAH      K           Clinical/Cardia…
#>  7      2018 1043477615      1 HUSSAIN   SARAH      K           Clinical/Cardia…
#>  8      2024 1144544834      1 MANLEY    EMILY      T           Physician Assis…
#>  9      2023 1144544834      1 MANLEY    EMILY      T           Physician Assis…
#> 10      2022 1144544834      1 MANLEY    EMILY      T           Physician Assis…
#> # ℹ 18 more rows
#> # ℹ 9 more variables: date_enrolled <date>, is_new <lgl>, is_maqi <lgl>,
#> #   yearsInMedicare <int>, pecosEnrollmentDate <int>, ORGS <list>,
#> #   qpStatus <lgl>, amsMipsEligibleClinician <lgl>, qpScoreType <lgl>
#> 
#> $metrics
#> # A tibble: 32 × 4
#>     year category   metric                  mean
#>    <int> <fct>      <fct>                  <dbl>
#>  1  2018 Group      Dual Eligibility Ratio 0.230
#>  2  2019 Group      Dual Eligibility Ratio 0.216
#>  3  2020 Group      Dual Eligibility Ratio 0.210
#>  4  2021 Group      Dual Eligibility Ratio 0.499
#>  5  2022 Group      Dual Eligibility Ratio 0.499
#>  6  2023 Group      Dual Eligibility Ratio 0.499
#>  7  2024 Group      Dual Eligibility Ratio 0.499
#>  8  2025 Group      Dual Eligibility Ratio 0.499
#>  9  2018 Individual Dual Eligibility Ratio 0.288
#> 10  2019 Individual Dual Eligibility Ratio 0.269
#> # ℹ 22 more rows
#>